

TracStar i450M In-Motion Antenna System

Version 1.0 February 2009

This document is supplied as and intended to be a reference document for TracStar Systems, Inc.'s product users. The document is periodically updated and may contain data that does not apply to users specific product or that is obsolete. If questions exist regarding the applicability of the data relative to your product, contact TracStar Technical Support at 888-650-9054.

© 2009 by TracStar Systems, Inc.

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of TracStar Systems, Inc.

TracStar Systems is a registered trademark of Cobham, PLC.

All other trademarks, service marks, or registered trademarks appearing in this guide are the trademarks or service marks of their respective owners.

上海宙际实业有限公司 Shanghai Universe Industrial Co., Ltd.

地址:上海市天目西路547号恒基不夜城 A 座1406 电话(Tel):(021)51061861 51061862

传真(Fax):(021) 51061863 全国电话: 4006888703

TableofContents

Listof Figures
List of Tables
About This Guide
What's in this Guide?
Audience
Document Conventions
Text Formats
Warning, Caution, Important, and Note icons
Chapter 1 – Introduction
Overview
Features
Components
Chapter 2 – Installation
Unpacking the Shipping Crate
Shipping crate contents
Removing the antenna from the shipping crate
Typical Installation
Cabling the System
Connecting cables to antenna
Sample routing of antenna cables to vehicle interior
Connecting antenna cables to the ACU and modem

Chapter 3 – System Operation	. 3-1 . 3-1
Turning on the System Starting the Satellite Acquisition	3-2 3-3
Chapter 4 – System Configuration	
Viewing or Changing the Tech Setup Code	4-1 . 4-3
Viewing or Changing Modem Type Settings	4-4 4-4 4-6 .4-6
Viewing or Changing Data Satellite Information	4-7 4-8 .4-9 4-10
Chapter 5 – Antenna Control Unit (ACU)	. 5-1 5-1
ACU Rear Panel	5-2 5-3
ACU Screen Navigation Tips	5-4
Ready/Run Mode (READY and RUN Screens)	5-6
Ready mode (READY Screen)	5-6
Run mode (RUN Screen)	5-7
Show Run Values (Sho Screen)	5-9
Set reference satellite (SetREF Screen)	5-11
Select data satellite (SELECT DATA Screen)	5-12
GPS mode (GPS Screen)	5-12
Manual compass input (COMPASS Screen)	5-13
User Setup (USER SETUP Screen)	5-14
Antenna jog control (Jog Screen)	5-14
Satellite parameters (Sat Screen)	5-16
Reference satellite (Rs Screen)	5-16

BW Screen	5
Lock method (LNBt Screen)	7
Communications monitor (Mc Screen)	7
Tech Setup (TECH SETUP Screen)	8
Set Option (SET OPTION Screen)	9
Set Test (SET TEST Screen)	9
Level/Gyro/Motor control (LEVL Screen)	1
Downlink polarity and modern type (Modern Screen)	1
Safety features (MOVE Screen)	2
Elevation calibration setting (Elcal Screen)	3
Tuner Frequency Setup (USAdvb Screen) 5-2	4
Signal detector settings (LNB Screen)	4
Factory test (Tt Screen)	;
Diagnostics (DIAG Screen)	6
Signal strength (a Screen)	7
Azimuth and elevation (A Screen)	8
Gyro bias and polarity angle offset (B Screen)	0
Modem Communications (Modem Communications Screen)	0
Modem communications monitor (c Screen)	1
Factory diagnostics (D Screen)	2
Base tilt angle (E Screen)	2
Indinometer values (Fpot Screen)	3
Gyroscope readings (FGyro Screen)	3
GPS position data (G Screen)	4
Inclinometer calibration value (H Screen)	6
Attitude offset settings (I Screen)	7
Scan width and scan velocity (J Screen)	7
Gyro temperature (K Screen)	8
Azimuth motor commands (L Screen)	9
Elevation motor commands (M Screen)	9
Polarizer motor commands (N Screen)	0
Azimuth encoder scale factor (O Screen)	0
Azimuth servo parameters (P Screen)	1
Elevation encoder scale factor (Q Screen)	2

Elevation servo parameters (R Screen)
Polarizer calibration values (S Screen)
Polarizer scale factor (T Screen)
Unused (U Screen)
Azimuth tracking parameters (V Screen)
Elevation tracking parameters (W Screen)
Appendix A – Product Specifications
Appendix B – Antenna Mounting Dimensions B-1
Appendix C – ACU Software Upload
Stopping the ACU Automatic Boot Process
Loading the Software
Appendix D – Fault Indicators
Appendix E – System Options
Glossary glossary-1
Indexindex-1

ListoFigues

Figure 1-1.	Antenna System Block Diagram
Figure 2-1.	Shipping Crate Lid Lag Bolt
Figure 2-2.	Hardware Shipping Box
Figure 2-3.	Shipping Retaining Bolt
Figure 2-4.	Roof Rack Mounting
Figure 2-5.	Antenna-to-Rack Positioning
Figure 2-6.	Antenna Mounting Screws
Figure 2-7.	Antenna Cable Connections
Figure 2-8.	Cable Routing to Vehicle Interior
Figure 2-9.	Securing Cables to the Roof Rack with Tie Wraps 2-9
Figure 2-10.	Cable Drip Loop
Figure 2-11. Modem Types .	ACU and Modem Cable Connections – Supported
Figure 3-1.	Ready Screen
Figure 3-2.	Run Screen: Unlocked
Figure 3-3.	Run Screen: Locked
Figure 4-1.	Tech Setup Screen – Code 0 Selected 4-2
Figure 4-2.	Tech Setup Screen – Auto 7 Selected 4-2
Figure 4-3.	Modem Screen – Downlink Polarity Selected 4-3
Figure 4-4.	Modem Screen – Modem Type Selected 4-3
Figure 4-5.	DIAG Screen
Figure 4-6.	J Screen 4-5
Figure 4-7.	V Screen
Figure 4-8.	W Screen

Figure 4-9. Select	t Data Screen – Satellite Selected 4-8
Figure 4-10. Select	: Data Screen – Satellite Selected 4-8
Figure 4-11. Select	Data Screen – Satellite Selected Example 4-9
Figure 4-12. Select	: Data Screen — Data Satellite Orbital
Locat	ion Selected
Figure 4-13. Select	: Data Screen – Data Satellite Orbital
Locat	ion Example
Figure 4-14. Set Te	est Screen – Test Field Selected
Figure 4-15. Set Te	est Screen – User Confirmation Field Selected4-10
Figure 4-16. EEPRO	OM SAVE — In Progress
Figure 4-17. Oper	Done Screen
Figure 5-1. Trac	Star i450M ACU Control Panel
Figure 5-2. TracS	itar i450M ACU Rear Panel
Figure 5-3. ACU	Screen Display L0
Figure 5-4. Read	y/Run Screen Flow
Figure 5-5. Read	y Screen
Figure 5-6. Run	Screen
Figure 5-7. Sho S	Screen
Figure 5-8. SetRe	ef Screen
Figure 5-9. Selec	t Data Screen
Figure 5-10. GPS S	Screen
Figure 5-11. Com	pass Screen
Figure 5-12. User	Setup Screen Flow
Figure 5-13. User	Setup Screen
Figure 5-14. Jog S	Screen
Figure 5-15. Sat S	creen
Figure 5-16. Rs Sc	reen
Figure 5-17. BW S	Screen
Figure 5-18. LNBt	: Screen
Figure 5-19. Mc S	creen
Figure 5-20. Tech	Setup Screen Flow
Figure 5-21. Tech	Setup Screen

Figure 5-22. Set Option Screen (Enable Mode)
Figure 5-23. Set Test Screen
Figure 5-24. LEVL Screen
Figure 5-25. Modem Screen
Figure 5-26. Move Screen
Figure 5-27. Elcal Screen
Figure 5-28. USAdvb Screen
Figure 5-29. LNB Screen. 5-24
Figure 5-30. Tt Screen
Figure 5-31. Diagnostics Screen Flow
Figure 5-32. Diag Screen
Figure 5-33. Diagnostic `a' Screen
Figure 5-34. Diagnostic 'A' Screen
Figure 5-35. Diagnostic 'B' Screen
Figure 5-36. Diagnostic Modem Communications Screen
Figure 5-37. Diagnostic `c' Screen
Figure 5-38. Diagnostic 'D' Screen
Figure 5-39. Diagnostic `E' Screen
Figure 5-40. Diagnostic Fpot Screen
Figure 5-41. Diagnostic FGyro Screen
Figure 5-42. Diagnostic 'G' Screen
Figure 5-43. Diagnostic `H' Screen
Figure 5-44. Diagnostic `I' Screen
Figure 5-45. Diagnostic `J' Screen
Figure 5-46. Diagnostic `K' Screen
Figure 5-47. Diagnostic `L' Screen
Figure 5-48. Diagnostic 'M' Screen

Figure 5-53. Diagnostic 'R' Screen
Figure 5-54. Diagnostic 'S' Screen
Figure 5-55. Diagnostic 'T' Screen
Figure 5-56. Diagnostic 'U' Screen
Figure 5-57. Diagnostic 'V' Screen
Figure 5-58. Diagnostic 'W' Screen
Figure B-1. TracStar i450M Antenna Mounting Dimensions B-2
Figure C-2. Properties Window.
Figure C-3. HyperTerminal Window – Successful Connection to ACU C-3
Figure C-4. HyperTerminal Window – Boot Process Stopped C-4
Figure C-5. Send File Window C-5
Figure C-6. Ymodem-G File Send Window
Figure C-7. Sending Files Window C-6
Figure C-8. HyperTerminal Window – Software Upload Done C-6

Listof Tables

Table i.	Document Conventions
Table 2-1.	TracStar i450M Shipping Crate Contents 2-1
Table 4-1.	Scan Velocity Settings 4-5
Table 4-2.	Azimuth Track Settings
Table 4-3.	Elevation Track Settings 4-7
Table 5-1.	Ready Screen – Field Descriptions
Table 5-2.	Run Screen – Field Descriptions
Table 5-3.	Sho Screen – Field Descriptions
Table 5-4.	Select Data Screen – Field Descriptions
Table 5-5.	GPS Screen - Field Descriptions
Table 5-6.	User Setup Screen – Field Descriptions
Table 5-7.	Jog Screen – Field Descriptions
Table 5-8.	Tech Setup Screen – Field Descriptions
Table 5-9.	Set Option Screen – Field Descriptions
Table 5-10.	Set Test Screen – Field Descriptions
Table 5-11.	LEVL Screen - Field Descriptions
Table 5-12.	Modem Screen - Field Descriptions
Table 5-13.	Elcal Screen – Field Descriptions
Table 5-14.	LNB Screen - Field Descriptions
Table 5-15.	Diag Screen – Field Descriptions
Table 5-16.	Diagnostic `a' Screen - Field Descriptions
Table 5-17.	Diagnostic 'A' Screen – Field Descriptions
Table 5-18.	Diagnostic 'B' Screen – Field Descriptions

Table 5-19.	Diagnostic Modern Communications Screen – Field Descriptions 5	-31
Table 5-20.	Diagnostic `c' Screen – Field Descriptions	-31
Table 5-22.	Diagnostic Fpot Screen – Field Descriptions	-33
Table 5-21.	Diagnostic 'E' Screen – Field Descriptions	-33
Table 5-23.	Diagnostic FGyro Screen – Field Descriptions	-34
Table 5-24.	Diagnostic `G' Screen - Field Descriptions	-35
Table 5-25.	Diagnostic 'H' Screen – Field Descriptions	-37
Table 5-27.	Diagnostic 'K' Screen - Field Descriptions	-38
Table 5-26.	Diagnostic 'J' Screen - Field Descriptions	-38
Table 5-28.	Diagnostic `L' Screen - Field Descriptions	-39
Table 5-29.	Diagnostic 'M' Screen - Field Descriptions	-40
Table 5-30.	Diagnostic 'O' Screen – Field Descriptions	-41
Table 5-32.	Diagnostic 'Q' Screen - Field Descriptions	-42
Table 5-31.	Diagnostic 'P' Screen – Field Descriptions	-42
Table 5-33.	Diagnostic 'R' Screen – Field Descriptions	-43
Table 5-34.	Diagnostic 'S' Screen – Field Descriptions	-44
Table 5-35.	Diagnostic 'T' Screen – Field Descriptions	-45
Table 5-36.	Diagnostic 'V' Screen – Field Descriptions	-46
Table 5-37.	Diagnostic 'W' Screen – Field Descriptions	-47
Table A-1.	TracStar i450M Technical Specifications	4-1
Table E-2.	System Options	E-1

Anthisgie

AutifiCite provides a brief description of the guide's contents, the intended audience of the guide, and the document conventions used throughout this guide.

What's in this Guide?

This guide is organized as follows:

Chapter 1 – Introduction. Provides an overview of the TracStar i450M antenna.

Chapter 2 – Installation. Provides the basic instructions for installing the TracStar i450M antenna and antenna control unit (ACU) in most vehicles,.

Chapter 3 – System Operation. Explains the standard satellite acquisition process.

Chapter 4 – System Configuration. Describes the system settings that can be changed if you want to reconfigure the system for a different network before starting the satellite acquisition.

Chapter 5 – Antenna Control Unit (ACU). This chapter describes the ACU and provides examples of the ACU screens, along with field descriptions of each screen and navigational tips.

Appendix A – Product Specifications. Provides the technical specifications for the TracStar i450M antenna.

Appendix B – Antenna Mounting Dimensions. Provides an illustration of the TracStar i450M antenna mounting dimensions.

Appendix C – ACU Software Upload. Provides the procedures for uploading the software to the ACU.

Appendix D – Fault Indicators. Provides a brief description of the most common fault indicators that may display.

Appendix E – System Options. Provides a list of system options that are used for calibration and troubleshooting procedures.

Glossary. Contains a list of all acronyms and industry terms used in this guide.

Index. Helps you to quickly find topics in this guide.

Audience

This guide is intended for anyone interested in installing and operating the TracStar i450M antenna system.

Document Conventions

This section describes the text formats and graphics that are used in this guide, which are designed to help you quickly understand the information presented.

Text Formats

Table i describes the document conventions used throughout this manual.

Table i. Document Conventions

Convention	Description
ENTER	Represents a button on the ACU control panel (not to be confused with a key on a keyboard).
SMALL CAPS	Indicates a key on a keyboard (e.g., CTRL+BREAK, ENTER).
Italics	Emphasizes words (e.g., <i>Dat</i> change the settings.).
Boldface	Indicates text that displays on the ACU display screen (e.g., Highlight SatA on the Select Data screen.).
ALL CAPS (TYPEWRITER FONT)	Refers to system text that displays on a window (e.g., TSS_MON3.2 displays on the HyperTerminal window.).

Warning, Caution, Important, and Note icons

This guide includes warnings, cautions, and informational notes, where appropriate, to point out important or safety-related information.

CAUTION: Indicates the presence of a hazard that could result in corruption of software or damage to equipment or warms about potential problems in the outcome of what you are doing.

Denotes information that TracStar feels is important for product operation.

Emphasizes points or provides reminders.

1 Haddar

This chapter provides a basic introduction to the TracStar i450M antenna system.

Overview

The i450M antenna from TracStar is built to track a single satellite while mounted on a stationary or moving vehicle traveling over improved or unimproved road conditions.

You now have the freedom and flexibility to move quickly *autheointhe* using a communications terminal that is very responsive and Internet/ Intranet-compatible.

With the TracStar i450M antenna, you can enjoy the same reliable and secure high-speed, IP-based data communication that you may be accustomed to in the office, but now you can experience it while *ontenne*.

Features

TracStar Systems acquisition technology closely couples with the satellite modem, thus enhancing the satellite acquisition accuracy and reducing the startup time. The antenna goes directly to the data satellite and, using enhanced communications capability with intelligent modems, is able to acquire, lock, and peak on the specific satellite without the traditional prealignment reference satellite stage.

The antenna also provides:

- ? Three-axis polarization over elevation over azimuth.
- ? Configuration for operation on most satellites.
- ? Design capability for simple operation, performing precise antennato satellite alignment with the push of a single button.

Each antenna is fully integrated with:

- ? An antenna control unit (ACU) with user interface
- ? High-precision motors with optical encoders
- ? A global positioning system (GPS)
- ? Base-angle tilt sensors
- ? Three-axis gyroscopes

Components

The TracStar i450M antenna system consists of three main components:

? Antenna. Located on the roof of the vehicle. The internal operational components are covered with a weather proof dome.

To maintain optimum performance of the antenna, it is important to keep the dome clean. Use water and mild soap.

Application of a commercial car polish may also improve water shedding.

- ? ACU. Located in the vehicle. The antenna control unit (ACU)/power supply is used to activate and monitor the system. It is also used to access programming and diagnostic information. (A Handheld Display is also provided that can be used in place of the ACU if there is a need for remote control or monitoring of the system.)
- ? Modem. Located in the vehicle. The modem decodes the satellite signal to ensure the i450M locks onto and tracks the correct satellite. (Modem typically provided by user.)

Block diagram Figure 1-1 shows a block diagram of the i450M antenna system.

Figure 1-1. Antenna System Block Diagram

CAUTION: DC voltage present on wiring. Do not cut, splice, or insert any devices.

IMPORTANT

It is highly recommended that system installation and any subsequent modifications, disassembly, or reassembly be conducted by a factory-authorized representative. Contact TracStar Systems, Inc., for the nearest factory authorized representative.

This chapter provides the basic instructions for installing the TracStar i450M antenna and antenna control unit (ACU) in most vehicles, which involves:

- ? Unpacking the shipping crate
- ? Installing the antenna
- ? Cabling the system

Unpacking the Shipping Crate

Shipping crate contents

Equipment and materials may vary according to the type of modern being used. Be sure to verify the complete shipment of your antenna system, ensuring that nothing was damaged, before beginning the installation.

Table 2-1. TracStar i450M Shipping Crate Contents

IMPORTANT

Be sure to save the shipping crate, packing materials, and shipping restraining screws for the antenna. If the system needs to be returned for maintenance, you will be responsible for proper packing.

Description/Serial Number	Qty	Part Number	
i450M antenna	1	106443	
i450M Quick Start User Guide	1	MANUAL-450	
i450M Installation & Operation Guide	1	OP MANUAL-450	
Antenna control unit (ACU)	1	106450-2	
Handheld display	1	103086	
* System typically ships with one modern interface cable			

Description/Serial Number	Qty	Part Number
Handheld display cable (7 feet)	1	100291
Transmit cable (Tx)-LBand (25 feet)	1	107850
Receive cable (Rx)-LBand (25 feet)	1	107849
Control/power cable (25 feet)	1	106451
Modem interface cable*		
? Comtech CDM – 570L/625	1	100028-9
? iDirect iNFINITY 8000	1	100028-7
? ViaSat ArcLight	1	100028-12

Table 2-1. TracStar i450M Shipping Crate Contents (Cofue)

Removing the antenna from the shipping crate

WARNING: To avoid bodily injury or damage to antenna or vehicle, always use two or more people to move or lift the i450M antenna.

To remove the antenna from the shipping crate

1 Remove the four lag bolts from the shipping crate lid (one bolt on each side). See Figure 2-1.

Shipping crate lid lag bolt

Figure 2-1. Shipping Crate Lid Lag Bolt

2 With aid of assistant, remove shipping crate lid from shipping base.

3 Carefully remove hardware shipping box from interior of shipping crate lid. See Figure 2-2.

Figure 2-2. Hardware Shipping Box

4 Remove the five (5) shipping retaining bolts: four from each corner on the antenna base plate and one on the BUC mounting plate. See Figure 2-3.

Figure 2-3. Shipping Retaining Bolt

Typical Installation

This section describes a typical installation of the i450M antenna onto a

IMPORTANT

Read this manual thoroughly and carefully before attempting to install or operate the TracStar i450M antenna.

vehicle's roof rack. Custom installation should follow similar practice, or call the factory for assistance.

WARNING: Verify that the roof rack is in good condition and can support the i450M antenna.

To install the antenna to a vehicle roof rack

1 Adjust the roof rack cross bars to line up with the antenna mounting holes.

Refer to Appendix B, "Antenna Mounting Dimensions" for additional information.

2 With assistance, position the antenna on the vehicle's roof rack. (Make sure the antenna is centered to the vehicle side-to-side.) See Figure 2-4.

Figure 2-4. Roof Rack Mounting

3 Mount the antenna base to the roof rack at each of the six mounting locations (three on each side of the antenna), using two allen head screws and one U-bracket. See Figure 2-5.

Make sure the holes in the U-bracket line up with the holes on the antenna base.

Figure 2-5. Antenna-to-Rack Positioning

IMPORTANT

It is recommended that a low-strength liquid thread lock be applied to the screws before inserting into the U-brackets.

4 Fully tighten the twelve (12) mounting screws with the allen wrench (two screws at each of the six mounting locations). *Dartoet/tends* See Figure 2-6.

Use a nylon and flat metal washer with each mounting screw.

Figure 2-6. Antenna Mounting Screws

5 After the antenna has been installed onto the roof rack and all six brackets have been tightened, complete a thorough inspection of all brackets and screws.

Cabling the System

This section describes the proper method for connecting the transmit, receive, and control/power cables to the antenna, routing the cables from the antenna to the equipment within the vehicle, and then connecting the cables to the ACU and modern.

Connecting cables to antenna

Before you begin There are three cable connections on the rear of the antenna. The receive and control cables are located on the base of the antenna. The transmit cable is located on the end of the BUC.

- To connect the cables to the antenna
 - Connect one end of the transmit, receive, and control cables to the antenna. Ensure connectors are tight. See Figure 2-7.

The connections are weatherized and protected from outside elements.

Figure 2-7. Antenna Cable Connections

Sample routing of antenna cables to vehicle interior

Once you have connected the cables to the antenna, you are ready to route the cables from the antenna to the equipment within the vehicle.

CAUTION: Do not fold or kink the cables. Any bends should be gradual and kept to a minimum to avoid damaging the cables and degrading the satellite signals.

- ▶ To route the antenna cables to the vehicle interior
 - 1 Open the vehicle's rear hatch and route the cables down the roof rack's side support bar.
 - 2 Continue down the rain channel between the weather stripping and the

outer body of the vehicle to the bottom of the rear hatch. See Figure 2-8.

Figure 2-8. Cable Routing to Vehicle Interior

3 Use tie wraps to secure the cables to the roof rack cross bars after the cables have been routed from the antenna to the ACU inside the vehicle. See Figure 2-9.

- Figure 2-9. Securing Cables to the Roof Rack with Tie Wraps
- 4 At the bottom of the rear hatch, create a drip loop in the cable to help prevent water from entering the vehicle. See Figure 2-10.

- Figure 2-10. Cable Drip Loop
- 5 Route the cables into the vehicle to the desired location at the equipment rack.

6 Close the rear hatch carefully.

Inspect the cables to make certain that they are not bent, pinched, or damaged.

Connecting antenna cables to the ACU and modem

This section describes the proper connection of the i450M antenna to the ACU and modern.

To connect the antenna cables to the ACU and modem

CAUTION: Power off all equipment before connecting or disconnecting any cables from equipment.

- 1 Connect the *lieuie*cable from the antenna to the receive port on the modern.
- 2 Connect the *stant* cable to the transmit port on the modem.
- 3 Connect the control cable to the ACU.
- 4 Connect the modern interface cable from the ACU to the modern.

Figure 2-11 shows the cable connections for the different modern types.

CAUTION: Be sure the cables connecting the antenna to the ACU are connected properly.

Figure 2-11. ACU and Modern Cable Connections - Supported Modern Types

This chapter describes how to perform a standard satellite acquisition using the TracStar i450M antenna system.

Standard Satellite Acquisition Process

Upon power up of the system, the following sequence takes place:

- ? The system first loads a communication monitor program and displays MONITOR CHECK PLEASE WAIT while loading.
- ? The system then loads the operating software and displays LOADING PLEASE WAIT.
- ? The READY screen displays after the software load has completed.
- ? Press to start the standard satellite acquisition process.

RUN

- ? The system performs a self-calibration of all three axes (Azimuth, Elevation, and Polarity).
- ? The system acquires GPS for high-precision geographic location information.
- ? Using GPS and other internal sensors, the system determines if it is *stationary* or *in-motion*.
- ? If the system determines that it is:
 - **Stray** the polarization offset and the elevation look angle to the desired satellite is calculated, based on geographic information from the GPS data. The system then sets the polarization offset and adjusts the elevation look angle to the required settings and performs an azimuth sweep while looking for satellite frequency energy. If energy is detected, the system will pause for a moment to allow the modem to acquire the desired network. If there is no network indication from the modem, the system will continue the azimuth sweep until the network satellite is found.

? **Indu** the polarization offset and both azimuth and elevation angles can be calculated, based on geographic information from the GPS. The system then sets the polarization offset and adjusts the elevation look angle to the required settings and performs a 12-degree azimuth sweep around the calculated azimuth value until the system receives a network indication from the modem.

Turning on the System

Turning on the TracStar i450M antenna system involves powering up the antenna control unit (ACU) and the modern.

To turn on the system

1 Power on the ACU.

There are two power buttons on the ACU: one on the front and one on the rear of the unit. Both switches need to be in the *on*position for power to be supplied to the antenna system.

The ACU displays the READY screen (with the STOP LED selected). See Figure 3-1.

Figure 3-1. Ready Screen

2 Power on the modem.

3 Do one of the following:

- ? If the system has been configured for the desired network, see "Starting the Satellite Acquisition" on page 3-3. (You do not need to change the user settings.)
- ? If you want to reconfigure the system for a different network, see Chapter 4, "System Configuration" on page 4-1, before starting the satellite acquisition.

begin

Starting the Satellite Acquisition

The system has a self-calibration and startup routine. User intervention is not required after the initiation of this process. Under normal operating conditions, the system determines its absolute location and then finds and locks onto the desired data satellite.

If the system has been configured for the desired network, you *do not* need to change the user settings and are ready to start the satellite acquisition.

.To reconfigure the system for a different network, see Chapter 4, "System Configuration" on page 4-1.

Before you You start the satellite acquisition from the READY screen.

If the Modem communications indicator on the READY screen displays waitMODEM instead of IDLE, you may have to reboot the system.

To start the satellite acquisition

1 From the READY screen, press to start the satellite acquisition.

RUN The system is active and has started the acquisition. See Figure 3-2.

Lock status

Figure 3-2. Run Screen: Unlocked

When the system locates the desired data satellite, the antenna locks onto the selected satellite. See Figure 3-3.

A satellite lock is indicated on the display screen with an uppercase L in the lower right corner, followed by the reported signal strength from the modern. (This number reads in dB with no decimal point.) In Figure 3 -3 the $_{\rm Eb/N0}$ is indicated as 11.2dB.

Figure 3-3. Run Screen: Locked

Once the system reads *line* it automatically switches to tracking mode.

- 2 If the system has not acquired the data satellite after several attempts, or several minutes have passed and no lock indication is present on the display, do the following:
 - ? Turn off power and check cable and power connections to all equipment, being careful to observe all warnings.
 - Ensure that the satellite modern is connected and configured properly ? for the desired data carrier. Re-apply power.
 - Ensure there is a clear, unobstructed view toward the satellite, relative ? to the system position.
 - ? Change the scan velocity to a lower number to slow the system sweep speed. Change only the first number (lower number equals slower speed). See "Viewing or changing scan velocity" on page 4-4.

This chapter describes the following system settings that can be changed if you want to reconfigure the system for a different network before starting the satellite acquisition:

- ? Downlink polarity
- ? Modem type
 - Data satellite information

.If the system has been configured for the desired network, see "Starting the Satellite Acquisition" on page 3-3. (You do not need to change the user settings.)

This chapter also provides the procedures for viewing the above system settings.

System backup ?

IMPORTANT

Before you can change any of the system settings, you must change the Tech Setup code to 13. This enables the system settings to be edited. See "Viewing or Changing the Tech Setup Code" on page 4-1.

If you change any of the system settings, you should perform a system backup. See "Backing Up System Settings" on page 4-10.

Viewing or Changing the Tech Setup Code

You view or change the Tech Setup code on the Tech Setup Screen. You cannot change most system settings unless you change the Tech Setup code to 13 (enable mode). Some parameters require other code values to allow modifications.

- To view or change the Tech Setup code
 - 1 From the READY screen (with the STOP LED selected), press MAIN until the TECH SETUP screen is displayed.

Code 0 is highlighted. See Figure 4-1.

Figure 4-1. Tech Setup Screen - Code 0 Selected

2 Press + Or - to set the desired code, and press ENTER to save your change.

AUTO 7 is highlighted. See Figure 4-2. (Donatdrargetrisnumber.)

Figure 4-2. Tech Setup Screen – Auto 7 Selected

3 Do one of the following:

If you want to view or change	then go to
downlink polarity	"Viewing or Changing Downlink Polarity or Modem Type" on page 4-3.
modem type	"Viewing or Changing Downlink Polarity or Modem Type" on page 4-3.
data satellite information	"Viewing or Changing Data Satellite Information" on page 4-7.
scan velocity	"Viewing or changing scan velocity" on page 4-4.

Viewing or Changing Downlink Polarity or Modem Type

The Modern screen enables you to view or change downlink polarity and

If you change the modern type, the following settings *ma*the changed: Scan velocity (changed on the diagnostic 'J' screen); azimuth track (changed on the diagnostic 'V' screen); and elevation track (changed on the diagnostic 'W' screen). Instructions are provided in this section.

modern type. You can change one or both.

- To view or change the downlink polarity or modem type
 - 1 If you have not changed the Tech Setup code to 13 (enable mode), then go to "Viewing or Changing the Tech Setup Code" on page 4-1.
 - 2 From the TECH SETUP screen, press to display the Modem screen. The downlink polarity setting is highlighted. See Figure 4-3.

Modem iNFINITI96 AntMDS450B

Figure 4-3. Modern Screen – Downlink Polarity Selected

3 Press \bigcirc or \bigcirc to change between HorzDN and VerDN.

- 4 Press to save your change.

The modern type is highlighted. See Figure 4-4.

Modem		
AntMDS	450B	VerDN

5 Pres	s or to change to the desired modern type. + -
	If you change the modern type, you may have to reboot the system before starting the satellite acquisition (that is, if the READY screen displays waitMODEM instead of IDLE, meaning no modern communications exist).
o He	ss to save your change.
	ENTER

IMPORTANT

When changing between iNFINITI96 and iNFINITI48, the system *mat.* rebooted. Power off the system for approximately 5 seconds and re-apply power.

- 7 If you changed the modern type, then you *must*change the settings associated with the selected modern type. Go to "Viewing or Changing Modern Type Settings" on page 4-4.
- 8 If you did not change the modern type, then do one of the following:

If you want to	then go to
view or change the data satellite information	"Viewing or Changing Data Satellite Information" on page 4-7.
start the satellite acquisition	"Starting the Satellite Acquisition" on page 3- 3.

Viewing or Changing Modem Type Settings

If you changed the modern type, you must change the following settings associated with the selected modern type:

- ? Scan velocity
- ? Azimuth track
- ? Elevation track

These procedures are provided in this section.

Viewing or changing scan velocity

If you changed the modern type, you *must*change the scan velocity (SV) settings.

The scan velocity may also be lowered to slow system sweep speed during the satellite acquisition. Change only the first number (lower number equals slower speed).

You view or change scan velocity settings on the diagnostic 'J' screen.

To view or change scan velocity settings

1 Press unui the DIAG screen is displayed. See Figure 4-5.

MAIN	
DIAG unlock	==>
St 10 D 0d	0

Figure 4-5. DIAG Screen

2 Press until the 'J' screen is displayed. See Figure 4-6.

The screens display in alpha order.

Jsw1	2.00	sv	2.40
Amz	0.7	CL	0.00

Figure 4-6. J Screen

match the desired modern type.

Table 4-1. Scan Velocity Settings

Modem	sv	
Comtech CDM570L/625	4.60	
ViaSat ArcLight	6.00	
iDirect iNFINITI 8000 2.40		
Sottings are subject to change without notice		

Settings are subject to change without notice.

4 If you changed the modern type, continue to "Viewing or changing azimuth track settings" on page 4-6.

5 If you lowered scan velocity to slow system sweep speed during the satellite acquisition, return to "Starting the Satellite Acquisition" on page 3-3.

Viewing or changing azimuth track settings

If you changed the modern type, you must change the azimuth track settings.

You view or change azimuth track settings on the diagnostic 'V' screen.

To view or change azimuth track settings

until the 'V' screen is displayed. See 1 From the DIAG screen, press Figure 4-7.

۷	Atka	80	b	50
	Atkc	6	d	40

Figure 4-7. V Screen

∠ use the to match desired modern type.

Table 4-2. Azimuth Track Settings

Modem	Atka	b	Atkc	d
Comtech CDM570L/625	80	50	6	40
ViaSat ArcLight	100	50	10	20
iDirect iNFINITI 8000	40	50	6	20
Settings are subject to change without notice				

3 Continue to "Viewing or changing elevation track settings" on page 4-6.

Viewing or changing elevation track settings

If you changed the modern type, you must change the elevation track settings.

You view or change elevation track settings on the diagnostic 'W' screen.

To view or change elevation track settings

```
1 From the DIAG screen, press I until the 'W screen is displayed. See Figure 4-8.
```


Figure 4-8. W Screen

2 Use the \oplus' , and \square buttons to adjust the elevation track settings

to match desired modem type.

Table 4-3. Elevation Track Settings

Modem	Etka	b	Etkc	d
Comtech CDM570L/625	80	20	20	25
ViaSat ArcLight	80	0	20	0
iDirect iNFINITI 8000	80	20	20	25
Settings are subject to change without notice.				

3 Do one of the following:

If you want to	then go to
view or change the data satellite information	"Viewing or Changing Data Satellite Information" on page 4-7.
start the satellite acquisition	"Starting the Satellite Acquisition" on page 3-3.

Viewing or Changing Data Satellite Information

The system allows two data satellite locations to be stored and acquires the satellite selected as SatA or SatB.

You can select one of the two pre-programmed data satellites (SatA or SatB) as well as change the data satellite orbital location.

You view or change data satellite information on the SELECT DATA screen.

To view or change data satellite information

1 From the READY screen (with the STOP LED selected), press until the SELECT DATA screen is displayed.

SatA or SatB is highlighted. See Figure 4-9.

Figure 4-9. Select Data Screen - Satellite Selected

2 Do one of the following:

If you want to	then go to
select a pre-programmed data satellite	"Selecting the data satellite" on page 4- 8.
change the data satellite orbital location	"Changing data satellite orbital location" on page 4-9.

Selecting the data satellite

You can select one of the two pre-programmed data satellites (SatA or SatB) on the SELECT DATA screen.

1 From the SELECT DATA screen, highlight SatA or SatB. See Figure 4-10.

To select a data satellite

Figure 4-10. Select Data Screen - Satellite Selected

2 Use \bigcirc or \bigcirc to change between satellites.

3 Arter changing the selection, press —— to store the satellite selection. ENTER

The system is set to acquire the selected satellite.

In Figure 4-11 data satellite A is set for 72.0 W, and data satellite B is set for 74.0 W. The system is set to acquire SatB.

SEL	ECT	D	ATA	SatB
Α	72.	0	В	74.0

Figure 4-11. Select Data Screen – Satellite Selected Example

4 Do one of the following:

If you want to	then go to
change the data satellite orbital location	"Changing data satellite orbital location" on page 4-9.
start the satellite acquisition	"Starting the Satellite Acquisition" on page 3-3.

Changing data satellite orbital location

You can change the orbital location of a stored data satellite on the SELECT DATA screen.

- To change the data satellite orbital location
 - 1 From the SELECT DATA screen, highlight the data satellite orbital location you want to change. See Figure 4-12.

2 Press \bigcirc or \bigcirc to change the value to the data satellite orbital slot in

degrees.

West longitude is entered as a positive number, and East longitude is entered as a negative number. See Figure 4-13.

3 Press to save your change.

(ENTER)

In Figure 4-13 data satellite A is set for 83.0 W, and data satellite B is set for 110.0 E. The system is set to acquire SatA.

4 If you want to start the satellite acquisition, then go to "Starting the Satellite Acquisition" on page 3-3.

Backing Up System Settings

wmen you change a system parameter and press _____, the system stores ENTER the settings to *filmmmy* To commit these changes to long-term backup storage, you must save them to Electrically Erasable Programmable Read-Only Memory (EEPROM), as described in this section.
To backup your system settings

Be sure the Tech Setup code is 13 (edit mode). See 'Viewing or Changing the Tech Setup Code'' on page 4-1 for instructions.

From the TECH SETUP screen, press ______ until the SET TEST screen is displayed.
The Tethel is highlighted. See Figure 4-14.

Figure 4-14. Set Test Screen – Test Field Selected

Figure 4-15. Set Test Screen – User Confirmation Field Selected

5 Press \bigcirc or \bigcirc to change the value to RUN NOW.

selected test [EEP SAVE] will be number)

The system displays EEPROM SAVE while the operation is in progress. See Figure 4-16.

EEPR	OM	SAVE	101
IDLE	Sat	B@	74.0

Figure 4-16. EEPROM SAVE - In Progress

Do not power off the system during this process until OPER DONE displays, indicating that the backup is complete.

OPER DONE displays when the settings are saved to EEPROM. See Figure 4-17.

OPER DON	E!
TracStar	C.2008

Figure 4-17. Oper Done Screen

This chapter describes the ACU and provides examples of the ACU screens, along with field descriptions (if applicable). Screen navigational tips are also provided.

ACU Control Panel

The TracStar i450M ACU supplies the power and commands required to operate the TracStar i450M antenna. It is also used to access programming and diagnostic information.

A *Hulttily* is also provided that can be used in place of the ACU display if there is a need for remote control or monitoring of the system.

Figure 5-1 shows the front control panel of the TracStar i450M ACU.

Figure 5-1. TracStar i450M ACU Control Panel

ACU Rear Panel

Figure 5-2 shows the rear panel of the TracStar i450M ACU.

Figure 5-2. TracStar i450M ACU Rear Panel

.You can only activate the ACU display *or* the Handheld display—you cannot activate both at the same time.

ACU Screen Display

There are four main groupings of screens involved in operating the ACU:

- ? Ready/Run
- ? User Setup
- ? Tech Setup
- ? Diagnostics

The screens are accessed on the ACU display screen, and each main screen has a grouping of associated screens, as shown in the screen layout in Figure 5-3.

See "ACU Screen Navigation Tips" on page 5-4 for basic instructions on how to navigate among and within the ACU screens using the buttons on the front control panel.

asic instructions for navigating through the ACU screens and describes the buttons used to do the navigation.

Button functions	The following table describes the functions of the buttons on the ACU control
	panel used to navigate through the ACU screens.

Press this button	То
MAIN	move vertically through the four main screens: ? Ready/Run ? User Setup ? Tech Setup ? Diagnostic s Regardless of what operation displays on the ACU display
	screen, you can always return to the READY/RUN screen by move horizontally through a main function's group of screens.
ENTER	store a field change or switch between fields on a screen. ENTER before moving to the next screen; otherwise, the new value will not be stored.
+ or -	modify values or settings for a highlighted field on a screen.

Blinking bars Blinking bars () may display on some screens, which indicate a highlighted near if you change a near svaue (using ______, or ___), the blinking bars change to ?, -?-, or ?> (or a variation thereof) to indicate that the value has changed but has not been stored. You must press $\underbrace{\text{ENTER}}_{\text{ENTER}}$

change.

See "Backing Up System Settings" on page 4-10 to commit these changes to long-term backup storage.

Ready/Run Mode (READY and RUN Screens)

Figure 5-4 shows the flow of the READY and RUN screens.

Figure 5-4. Ready/Run Screen Flow

Ready mode (READY Screen)

READY is the main or default screen and is displayed once the system is powered up. It displays the selected data satellite and orbital position (in degrees longitude). See Figure 5-5.

Figure 5-5. Ready Screen

Field	Description	Values
Run state	Indicates the antenna state.	10 = Idle
Modem communications indicator	Indicates whether the ACU is communicating with the modem.	IDLE = Modem communications exist; system is in standby. waitMODEM = No modem communications exist or the modem has not completed the boot process.
Field	Description	Values
------------------	---	---
Selected	Indicates the data satellite	SatA
satellite	selected.	SatB
Orbital position	Indicates the orbital position	-180 - +180
	of the selected data satellite in degrees longitude.	Positive degrees indicate West longitude; negative degrees indicate East longitude.

Table 5-1. Ready Screen - Field Descriptions

Run mode (RUN Screen)

The RUN screen displays when you have activated the system and the antenna is either scanning for or tracking a satellite. It shows the angles for azimuth, elevation, polarity, and heading.

The RUN screen only displays when the system is in run mode.

Figure 5-6. Run Screen

Field	Description	Values
Α	Azimuth position of the antenna.	0–360
E	Elevation position of the antenna.	20–70
Η	Direction that the base of the antenna is pointing.	0–360°
Run state	Indicates the antenna state.	 10 = Unit is powered on and ready. 792–796 =Adjusting gyro biases. 801 =Antenna calibration. 804 = Pole motors and elevation motors are moving to the calculated position based on satellite selection. 807 = Satellite search/scan. 901–902 = Antenna calibration when vehicle is in motion. 911–912 = Antenna detected a signal during search. Antenna will now do wider scans on azimuth to verify lock, increasing scan width by 50% on every pass. (Scan width [sw] is set on the diagnostic 'J' screen.) 931/B70–74 = Antenna was already locked onto satellite and peaking. 941–942 = Antenna was already locked onto satellite and is now unlocked. Antenna will now do wider scans to lock on again, increasing scan width by 10% on every pass. (Scan width [sw] is set on the diagnostic 'J' screen.)
0	Used for factory diagnostics.	
Vehicle direction indicator	Indicates vehicle direction based on GPS readings.	S = Stationary F = Forward (current direction of vehicle) R = Reverse (current direction of vehicle) f = Forward (last direction of vehicle)
g	GPS heading	0–360
р	Pedestal azimuth position in relation to the pedestal.	0–360

Table 5-2. Run Screen - Field Descriptions

Field	Description	Values
Lock status	Indicates whether the antenna has locked onto a satellite.	u = Unlocked L = Locked x = No communication with modem
Signal strength indicator	Indicates the filtered value of actual signal strength from the modem.	-99 — +1600 Values are in dB with no decimal (e.g., 1200 = 12.00 dB).

Table 5-2. Run Screen – Field Descriptions

Azimuth indication Azimuth position is indicated in degrees. If the system is in jog mode or if it is in acquisition mode but has not yet acquired a satellite, azimuth is indicated as degrees with the front of the antenna as being 0 and the rear being 180°. After the system has acquired a satellite, azimuth is indicated as degrees with North being 0 and South being 180°.

Show Run Values (Sho Screen)

The Sho screen shows the angles for azimuth, elevation, and heading, regardless of whether the unit is in ready or run mode.

Vehicle direction indicator

g

Figure 5-7. Sho Screen

T	able	5-3.	Sho	Screen -	- Field	Descri	ptions
---	------	------	-----	----------	----------------	--------	--------

Field	Description	Values
A	Azimuth position of the antenna.	0–360
E	Elevation position of the antenna.	20–70.
Н	Direction that the base of the antenna is pointing.	0–360
Тх	Transmit inhibit message, which indicates whether the last message sent to modem was online or offline.	6-8 = go online 2-4 = go offline
0	Used for factory diagnostics.	

Field	Description	Values
Vehicle	Indicates vehicle direction	S = Stationary
direction	based on GPS readings.	F = Forward (current direction of vehicle)
		R = Reverse (current direction of vehicle)
		f = Forward (last direction of vehicle)
		r = Reverse (last direction of vehicle)
g	GPS heading	0–360
р	Pedestal azimuth position in relation to the pedestal.	0-360
Lock	Indicates whether the antenna	u = Unlocked
status	has locked onto a satellite.	L = Locked
		$\mathbf{x} = \mathbf{N}\mathbf{o}$ communication with modem
Signal	Indicates signal strength.	-99 - +1600
strength indicator		Values are in dB with no decimal (e.g., 1200 = 12.00 dB).

Table 5-3. Sho Screen - Field Descriptions

Azimuth indication

Azimuth position is indicated in degrees. If the system is in jog mode or if it is in acquisition mode but has not yet acquired a satellite, azimuth is indicated as degrees with the front of the antenna as being 0 and the rear being 180°. After the system has acquired a satellite, azimuth is indicated as degrees with North being 0 and South being 180°.

Set reference satellite (SetREF Screen)

This feature is not currently used.

Figure 5-8. SetRef Screen

Select data satellite (SELECT DATA Screen)

The SELECT DATA screen allows you to select one of the two pre-programmed data satellites (SatA or SatB) as well as change the data satellite orbital location.

For procedural information on selecting a data satellite or changing the data satellite orbital location, see "Viewing or Changing Data Satellite Information" on page 4-7.

Figure 5-9. Select Data Screen

In Figure 5-9 data satellite A is set for 72.0 W, and data satellite B is set for 74.0 W. The system is set to acquire SatB.

Table 5-4. S	Select Data S	Screen — Field	Descriptions
--------------	---------------	----------------	--------------

Field	Description	Values
Selected data	Indicates the data satellite acquired	SatA
Satellite	by the system.	SatB
Α	Current longitude position of SatA.	-180 - +180
		Positive is West longitude; negative is East longitude.
В	Current longitude position of SatB.	-180 +180
		Positive is West longitude; negative is East longitude.

GPS mode (GPS Screen)

The antenna system has an integrated GPS to aid in satellite acquisition. The GPS screen allows you to select between the built-in GPS (default) or manually input GPS coordinates (in case the GPS is unavailable). Power cycling the unit resets to default conditions.

Figure 5-10. GPS Screen

Table 5-5. GPS Screen – Field Descriptions

Field	Description	Values
GPS mode	Indicates automatic or manual GPS coordinates.	NORMAL = Automatic MAN = Manual input
LAT*	Current latitude position.	-90 – +90 Equator is 0; Positive number is North latitude; negative is South latitude.
LONG*	Current longitude position.	-180 – +180 Positive number is West longitude; negative is East longitude
* Coordinates are el	ntered in degrees and decimals of dec	nrees (versus minutes and seconds)

Manual compass input (COMPASS Screen)

This feature is not currently used.

Figure 5-11. Compass Screen

User Setup (USER SETUP Screen)

User Setup contains several interactive and setup screens, including antenna jog control and satellite parameter setup.

Figure 5-12 shows the flow of the User Setup screens.

Figure 5-12. User Setup Screen Flow

The USER SETUP screen displays the antenna serial number and the software version. See Figure 5-13.

Figure 5-13. User Setup Screen

Table 5-6. User Set	up Screen — Field	Descriptions
---------------------	-------------------	--------------

Field	Description	Values
i/B	Used for factory diagnostics.	i
		Ь
#	Serial number of the antenna unit.	Factory set.
ver	TracStar i450M software version.	Factory set.

Antenna jog control (Jog Screen)

The Jog screen enables you to manually position the antenna in the azimuth, elevation, and polarization axes.

```
If you are manually positioning the antenna, you must press to 
RUN
activate the antenna motors. The START LED light blinks when the
motors are enabled.
```


Figure 5-14. Jog Screen

Table 5-7. Jog Screen – Field Descriptions

Field	Description	Values
Increment	Indicates fast or slow antenna	Fast (1° steps)
Indicator	jog increments.	Slow (0.2° steps)
A (line 1)	Azimuth position of the antenna (current antenna position).	0–360°
E (line 1)	Elevation position of the antenna (current antenna position).	20–70°
P (line 1)	Polarization position of the antenna (current antenna position).	-90 to +90°
A (line 2)	Azimuth jog step increment.	-99 – +99
E (line 2)	Elevation jog step increment.	-99 – +99
P (line 2)	Polarization jog step increment.	-99 — +99
Lock status	Indicates whether the antenna	u = Unlocked
	nas iockeo onto a satellite.	L = Locked

Satellite parameters (Sat Screen)

This feature is not currently used.

Figure 5-15. Sat Screen

Reference satellite (Rs Screen)

This feature is not currently used.

Figure 5-16. Rs Screen

BW Screen

This feature is not currently used.

BW	1		С	0
LOCK		0	d	0

Figure 5-17. BW Screen

Lock method (LNBt Screen)

This feature is not currently used.

LNBt LOCK	VA	0	c d	0 0
LNBt LOCK	VB	0	c d	0
LNBt LOCK	HA	0	c d	0
LNBt LOCK	HB	0	с d	0

Figure 5-18. LNBt Screen

Communications monitor (Mc Screen)

The Mc screen is used for factory debugging.

Mc	0	В	16	0	
00	00	00	00	00	

Figure 5-19. Mc Screen

Tech Setup (TECH SETUP Screen)

Tech Setup contains several interactive setup screens and provides the ability to enable/disable various sensors and motor drives. The Tech Setup screens are password-protected to prevent inadvertent or undesirable changes.

CAUTION: Antennas are typically shipped fully configured. Changing data in the ACU may render the antenna inoperable. Change ACU settings with caution.

Figure 5-20 shows the flow of the Tech Setup screens.

Figure 5-20. Tech Setup Screen Flow

The TECH SETUP screen enables the user to enter various codes, which *uth*other features in the Tech Setup and User Setup screens. See Figure 5-21.

TECH	SET	UP -	->
Code	0	Auto	7
A	4	A	•
Code		Auto	

Figure 5-21. Tech Setup Screen

Table 5-8. Tech Setup Screen	- Field Descriptions
------------------------------	----------------------

Field	Description	Values
Code	Tech setup code.	0–60 <i>Must be set to 13 to change most system</i> <i>parameters.</i>
Auto	For factory use only.	7

IMPORTANT

If you want to change most system settings (such as data satellite information or scan velocity), you must change Code 0 to Code 13 (enable mode) on the TECH SETUP screen. See "Viewing or Changing the Tech Setup Code" on page 4-1.

Set Option (SET OPTION Screen)

The SET OPTION screen is used for special functions by factory personnel.

This screen is enabled only when Code 13 is set on the TECH SETUP screen. See "Viewing or Changing the Tech Setup Code" on page 4-1 for procedural information.

Figure 5-22. Set Option Screen (Enable Mode)

Table 5-9	Set Option	Screen - Field	Descriptions
-----------	------------	----------------	--------------

Field	Description	Values
Option	Used for calibration and troubleshooting procedures	For a list of system options, see Appendix E, "System Options".

Set Test (SET TEST Screen)

Several test functions are available in Set Test.

This screen is enabled only when Code 13 is set on the TECH SETUP screen. See "Viewing or Changing the Tech Setup Code" on page 4-1 for procedural information.

Figure 5-23. Set Test Screen

Table 5-10. Set Test Screen –	Field	Descriptions
-------------------------------	--------------	--------------

Field	Description	Values
Test	Indicates test functions to be performed.	NONE SET PAZO (Not used) POLE TEST MECH CAL = Mechanical self-calibration of antenna. USA REF SETUP (Not used) CLEAR REF DATA (Not used) SCAN FREQ (Not used) SCAN FREQ (Not used) SCAN Sky (Not used) EEP SAVE = Saves memory to EEPROM (Electrically Erasable Programmable Read-Only Memory). SHOW MOVEs = Pre-programmed motion exercise. The above tests do not have input parameters—they are RUN or NOT RUN as a standard factory setup under direction of factory personnel.
User confirmation	Confirms whether the selected test should be <i>cancelled</i> or <i>run row</i>	cancel RUN NOW

Level/Gyro/Motor control (LEVL Screen)

The LEVL screen allows you to turn off the base-level sensors and the azimuth, elevation, and polarization motors. It also allows you to disable the internal gyroscopes.

.You would normally only use this screen in a troubleshooting situation.

Figure 5-24. LEVL Screen

Table 5-11. LEVL Screen – Field Descriptions

Field	Description	Values
LEVL	Base-level sensor.	ON OFF
GYRO	Not applicable to this antenna. Gyros are always active and cannot be disabled.	OFF
AzPL	Azimuth and polarization motor.	NOR = Normal DIS = Disabled
EL	Elevation motor.	NOR = Normal DIS = Disabled

Downlink polarity and modem type (Modem Screen)

The Modern screen enables you to change downlink polarity and modern type. You can change one or both.

See "Viewing or Changing Downlink Polarity or Modern Type" on page 4-3 for procedural information.

IMPORTANT

To change downlink polarity and modern type, you need to set the system to Code 13 on the TECH SETUP screen. See "Viewing or Changing the Tech Setup Code" on page 4-1.

Figure 5-25. Modem Screen

Field	Description	Values		
Modem type	Supported modern types.	None		
		ComTech		
		iNFINITI48		
		iNFINIT196		
		ComTech562		
Ant	Supported antenna types.	MDS450		
		MDS450B		
		 If your antenna is: IMVS450 (side pod unit), then your antenna type is MDS450. i450M or IMVS450M (external BUC unit), then your antenna type is MDS450B. 		
Downlink polarity setting	Indicates the receive polarization for the antenna.	HorzDN = horizontal downlink VerDN = vertical downlink		

Safety features (MOVE Screen)

All safety features for the TracStar i450M system are preset by TracStar and cannot be changed.

Figure 5-26. Move Screen

Elevation calibration setting (Elcal Screen)

The Elcal screen shows the elevation calibration point as set by the factory.

Figure 5-27. Elcal Screen

Table 5-13. Elcal Screen – Field Descriptions

Field	Description	Values	
Elcal	Elevation calibration offset.	18–24 (typically)	
EXT	External disable.	Not used.	

Tuner Frequency Setup (USAdvb Screen)

This feature is not currently used.

Figure 5-28. USAdvb Screen

Signal detector settings (LNB Screen)

The TracStar i450M system has a built-in RF signal strength detector. The amount of satellite frequency energy received by the system is converted to a three-digit no. that can be viewed on this page.

Figure 5-29. LNB Screen

Table 5-14. LNB Screen – Field Descriptions

Field	Description	Values		
Gain	Adjust the gain of the LNB as seen by the i450M signal strength detector.	100 (nominal setting)		
Offset	LNB noise offset as seen by the i450M signal strength detector.	20		
Signal strength	Received signal strength as seen by the internal i450M signal strength detector.	0–200		

Factory test (Tt Screen)

The Tt screen is a factory test screen.

CAUTION: These values are set by the factory—do not change. Changing these settings will cause the unit to function erratically or not at all.

Figure 5-30. Tt Screen

Diagnostics (DIAG Screen)

Diagnostics includes information on antenna pointing angles, level sensor readings, GPS data, and other system information.

Figure 5-31 shows the flow of the Diagnostics screens.

Figure 5-31. Diagnostics Screen Flow

The main diagnostic screen (DIAG) indicates the tracking state of the antenna, vehicle direction, and modern communications state. It also allows you to set system variables, which are further defined on the diagnostics screens described in this section.

Figure 5-32. Diag Screen

Field	Description	Values
Lock status	Indicates whether the antenna has locked onto a satellite.	unlock LOCKED
		waitMODEM = No communication with modem (or modem has not completed boot process)
St	State of the antenna.	10 = Unit is powered on and ready.
		792–796 =Adjusting gyro biases.
		801 =Antenna calibration.
		804 = Pole motors and elevation motors are moving to the calculated position based on satellite selection.
		807 = Satellite search/scan.
		901–902 = Antenna calibration when vehicle is in motion.
		911–912 = Antenna detected a signal during search. Antenna will now do wider scans on azimuth to verify lock, increasing scan width by 50% on every pass. (Scan width [sw] is set on the diagnostic `J' screen.)
		931/B70-74 = Antenna is locked onto satellite and peaking.
		941–942 = Antenna was already locked onto satellite and is now unlocked. Antenna will now do wider scans to lock on again, increasing scan width by 10% on every pass. (Scan width [sw] is set on the diagnostic 'J' screen.)
D	Direction of the vehicle based on GPS readings.	0 = Stationary 1 = Forward motion
d	For factory use only.	_

Table 5-15. Diag Screen - Field Descriptions

Signal strength (a Screen)

The diagnostic 'a' screen displays the reported $_{\rm Eb/N0}$ from the modem as well as elevation tracking information.

Figure 5-33. Diagnostic 'a' Screen

Table 5-16. Diagnostic 'a' Screen – Field Descriptions

Field	Description	Values		
g	Signal quality from the in-built tuner.	For factory use only.		
Eb	Indicates _{Eb/N0} or signal strength value. _{Eb/N0} is reported by the modem; signal strength is determined by the onboard tuner.	-99 – +99		
E	Indicates the total value of correction in elevation from the calibration point when tracking (in degrees).	2.0 If > 2.0, then make adjustments on the Elcal screen. See "Elevation calibration setting (Elcal Screen)" on page 5-23.		
e	Indicates the steering value in elevation from step track. This adjusts the E value.	 + value = If elevation is being commanded to raise. - value = If elevation is being commanded to lower. 		
Lm	Indicates the value used to determine whether vehicle is stationary.	Values less than 100 indicate stationary.		

Azimuth and elevation (A Screen)

The diagnostic $\mbox{\sc A}'$ screen indicates the azimuth and elevation angles of the antenna.

Figure 5-34. Diagnostic 'A' Screen

Line 1 shows the antenna azimuth A and elevation E angles. Azimuth is relative to the earth when locked onto a satellite. Before locking onto a satellite, the azimuth angles are referenced to the antenna base with the front of the antenna being 0°. Elevation angles are always referenced to the horizon being 0°.

Line 2 indicates the azimuth and elevation angles, relative to the pedestal coordinates.

Field	Description	Values
Α	Antenna azimuth angle.	0–360°
E	Antenna elevation angle.	20–70°
Am	Azimuth position according to motor encoder.	
Ер	Elevation angle correction due to base tilt.	-12 - +12

Table 5-17. Diagnostic 'A' Screen - Field Descriptions

Field	Description	Values
Ар	Azimuth position according to optical encoder in base.	0–360°
Ad	Angle difference between Am and Ap.	-1 - +1

Table 5-17. Diagnostic 'A' Screen - Field Descriptions

Gyro bias and polarity angle offset (B Screen)

The diagnostic 'B' screen displays the gyro bias settings and polarization angle of the antenna.

Figure 5-35. Diagnostic 'B' Screen

Table	5-18.	Diagnostic	`B ′	Screen -	Field	Descri	otions

Field	Description	Values
а	Bias value of the azimuth gyro.	-2000 - +2000
е	Bias value of the elevation gyro.	-2000 - +2000
PL	Calculated polarization offset in degrees from current position to the selected data satellite.	-90 - +90
r	Bias value of the Roll gyro.	-2000 - +2000

Modem Communications (Modem Communications Screen)

The diagnostic Modern Communications screen displays the last test string received from the modern (therefore, the screen display varies) or indicates that no communication with modern exists.

Figure 5-36. Diagnostic Modern Communications Screen

Field	Description	Values
Communication s string	Displays the last reply received from the modem.	NONE = No communication with modem.
		[bting] = Last text string received from modem.
Command	Increments one digit for	1–5
counter each reply received from the modern.	This field displays only when communication with modem exists.	

Modem communications monitor (c Screen)

The diagnostic 'c' screen displays the number of modern messages received on the serial port when connected to moderns capable of two-way communication.

С	07	45	0	1	0
n-	11	0	0	0	0

Figure 5-37. Diagnostic 'c' Screen

Table 5-20. Diagnostic 'c' Screen - Field Descriptions

Field	Description	Values
[alfields]	For factory use only.	_

Factory diagnostics (D Screen)

This feature is not currently used.

Figure 5-38. Diagnostic 'D' Screen

Base tilt angle (E Screen)

The values on the diagnostic 'E' screen are the pedestal base tilt angles as measured by the tilt sensors.

Figure 5-39. Diagnostic 'E' Screen

Field	Description	Values
EBa	Calculated elevation base angle.	-12 - +12
Afx	Azimuth adjustment due to base tilt.	-12 - +12
RBa	Calculated roll base angle.	-12 - +12
Rfx	Roll adjustment due to base tilt.	-12 - +12
Elv	Elevation base angle reading from the inclinometer.	-12 - +12
Riv	Roll base angle reading from the inclinometer.	-12 - +12

Table 5-21. Diagnostic 'E' Screen - Field Descriptions

Inclinometer values (Fpot Screen)

The diagnostic Fpot screen displays real-time digitized readings from the elevation and roll inclinometers.

Figure 5-40. Diagnostic Fpot Screen

Field	Description	Values
Ar	Not used.	—
Er	Elevation reading.	13,000 - 18,000
Rr	Roll reading.	13,000 - 18,000

Gyroscope readings (FGyro Screen)

The diagnostic FGyro screen displays the output from the three-axis gyroscope sub-assembly.

Figure 5-41. Diagnostic FGyro Screen

Table 5-23. Diagnostic FGyro Screen – Field Descriptions

Field	Description	Values
Ag	Azimuth gyro.	0–3000
		Near 1650 when stationary.
Eg	Elevation gyro.	0–3000
		Near 1650 when stationary.
Rg	Roll gyro.	0–3000
		Near 1650 when stationary.

GPS position data (G Screen)

The diagnostic `G' screen provides the GPS position data and status. For GPS to work, you have to have a minimum of three signals.

Table 5-24. Diagnostic 'G' Screen - Field Descriptions

Field	Description	Values
GPS	Indicates current GPS status.	?? = GPS position not found ok = GPS position locked
Vel	Indicates vehicle velocity in knots.	0.00-100.00

Field	Description	Values
S[<i>x</i>]	GPS satellite status.	<pre>xyz, where:</pre>
		? zindicates the number of GPS satellites currently being received.
LAT	Indicates current latitude of the system.	-90 – +90°
LONG	Indicates current longitude of the system.	-180 – +180°
HEAD	Indicates current GPS heading when the vehicle is in motion.	0–360°

Table 5-24. Diagnostic 'G' Screen – Field Descriptions

Inclinometer calibration value (H Screen)

The diagnostic `H' screen displays the center value for the elevation and roll inclinometers.

Ac Figure 5-43. Diagnostic 'H' Screen

Field	Description	Values
Ac	Not used.	—
Ec	Elevation inclinometer calibration setting at 0° base angle.	15,000–16,500
Rc	Roll inclinometer calibration setting at 0° base angle.	15,000–16,500

Table 5-25. Diagnostic 'H' Screen - Field Descriptions

Attitude offset settings (I Screen)

This feature is not currently used.

Ico	0.00Eo	0.00
Paz	0.00Po	0.00

Figure 5-44. Diagnostic 'I' Screen

Scan width and scan velocity (J Screen)

The diagnostic 'J' screen allows you to set the width of the azimuth scan used during the initial satellite acquisition as well as set the azimuth scan velocity.

Figure 5-45. Diagnostic 'J' Screen

Field	Description	Values
SW	Scan width in degrees when near target satellite.	12.00–15.00 (typical)
SV	Scan velocity.	See "Viewing or changing scan velocity" on page 4-4 to adjust scan velocity settings to match the desired modem type.
Amz	Azimuth offset added to compensate for offset in vehicle to-antenna installation.	0–5
CL	For factory use in initial calibration.	— — Refer to the 'TracStar On- the Move Calibration and Road Test Procedure" (Doc. No. PI-710-030).

Table 5-26. Diagnostic 'J' Screen – Field Descriptions

Gyro temperature (K Screen)

The diagnostic `K' screen displays the temperature inside the gyro sub assembly.

Figure 5-46. Diagnostic 'K' Screen

Table 5-27	. Diagnostic `K'	Screen - Field	Descriptions
------------	------------------	----------------	--------------

Field	Description	Values
sfe	Scale factor elevation.	Notused
sfr	Scale factor roll.	Notused
т	Gyro temp in degrees fahrenheit.	-20 – +122°

Azimuth motor commands (L Screen)

The diagnostic 'L' screen displays real-time azimuth motor commands.

Figure 5-47. Diagnostic 'L' Screen

Table 5-28. Diagnostic 'L' Screen - Field Descriptions

Field	Description	Values
azEM	Azimuth motor position.	.09 - +.1
azEr	Servo position error.	04 - +.03
D	DAC value.	-120 - +120
C	Current value.	-100 - +100
E	Encoder counts.	-999,999 - +999,999

Elevation motor commands (M Screen)

The diagnostic 'M' screen displays real-time elevation motor commands.

Figure 5-48. Diagnostic 'M' Screen

Table 5-29. Diagnostic 'M' Screen - Field Descriptions

Field	Description	Values
elEr	Servo position error.	1 - +.18
D	DAC value.	-120 - +120
С	Current value.	-100 - +100
E	Encoder counts.	0 -9999 9

Polarizer motor commands (N Screen)

The polarization motor commands are issued by the polarizer motor microcontroller and are not displayed here.

		11-000	
NplEr	0.00	D	0
10.0	F		0
			U

Figure 5-49. Diagnostic 'N' Screen

Azimuth encoder scale factor (O Screen)

The diagnostic 'O' screen displays azimuth encoder motor scale factors.

Figure 5-50. Diagnostic 'O' Screen

Table 5-30. Diagnostic 'O' Screen - Field Descriptions

Field	Description	Values
AZ>EncSf	Azimuth encoder scale factor.	1191
Кр	Servo loop data.	50
Ki	Servo loop data.	15

Azimuth servo parameters (P Screen)

The diagnostic 'P' screen displays the azimuth servo parameters. CAUTION: Do not change without assistance from factory personnel.

Figure 5-51. Diagnostic 'P' Screen

Field	Description	Values
AZ>Psf	Azimuth pot scale factor.	300
BL	Servo parameters.	80
VF	Servo parameters.	30

Table 5-31. Diagnostic 'P' Screen – Field Descriptions

Elevation encoder scale factor (Q Screen)

The diagnostic 'Q' screen displays the elevation encoder scale factor. CAUTION: Do not change without assistance from factory personnel.

Figure 5-52. Diagnostic 'Q' Screen

Table 5-32. Diagnostic 'Q' Screen – Field Descriptions

Field	Description	Values
EL>EncSf	Elevation encoder scale factor.	6015
Кр	Servo loop data.	50
Кі	Servo loop data.	20

Elevation servo parameters (R Screen)

The diagnostic 'R' screen displays the elevation servo parameters. CAUTION: Do not change without assistance from factory personnel.

Figure 5-53. Diagnostic 'R' Screen

Table 5-33. Diagnostic 'R' Screen – Field Descriptions

Field	Description	Values
EL>Psf	Elevation pot scale factor.	1034
BL	Servo parameters.	50
VF	Servo parameters.	60

Polarizer calibration values (S Screen)

The diagnostic 'S' screen displays the polarizer calibration settings for both the transmit and receive polarizers.

Figure 5-54. Diagnostic 'S' Screen

Table 5-34. Diagnostic 'S' Screen - Field Descriptions

Field	Description	Values
PL>EncSf	Polarizer encoder scale factor.	Notused
Tz	Offset value to calibrate transmit polarizer to 0° polarization offset.	0–5000 To adjust the transmit polarizer for cross-pol isolation, refer to the "TracStar On-the-Move Calibration and Road Test Procedure" (Doc. No. PI-710- 030).
Rz	Offset value to calibrate receive polarizer to 0° polarization offset.	0–5000

Polarizer scale factor (T Screen)

The diagnostic 'T' screen displays the encoder scale factors for both the transmit and receive polarizers.

Figure 5-55. Diagnostic 'T' Screen

Table 5-35. Diagnostic 'T' Screen – Field Descriptions

Field	Description	Values
PL>PsF	Polarizer pot scale factor.	Not used.
Тх	Transmit polarizer scale factor.	1934
Rx	Receive polarizer scale factor.	1934

Unused (U Screen)

This feature is not currently used.

U	0	0	0
	0	0	0

Figure 5-56. Diagnostic 'U' Screen

Azimuth tracking parameters (V Screen)

The diagnostic 'V' screen is used to set azimuth track parameters.

See "Viewing or changing azimuth track settings" on page 4-6 for procedural information.

Figure 5-57. Diagnostic 'V' Screen

Table 5-36. Diagnostic 'V' Screen – Field Descriptions

Field	Description	Values
Atka	Gain.	40–100
b	Integrator gain.	50
Atkc	Integrator reset.	6–10
d	Reset for position adjustment.	20-40

Elevation tracking parameters (W Screen)

The diagnostic 'W' screen is used to set elevation track parameters.

"See "Viewing or changing elevation track settings" on page 4-6 for procedural information.

Etka b Figure 5-58. Diagnostic 'W' Screen

Field	Description	Values
Etka	Gain.	80–100
b	Intergrator gain.	0–20
Etkc	Intergrator reset.	20
d	Delay time for box step.	0–50

Table 5-37. Diagnostic 'W' Screen - Field Descriptions

Table A-1 provides the technical specifications for the TracStar i450M antenna.

Size	? 45cm elliptical equivalent
Mount geometry	? Elevation over azimuth
Polarization	? Linear phase shift
	TRAVEL
Azimuth	? 360° continuous
Elevation	? 20–70°
Polarization	? ±95°
	TRACKING
Acceleration	? >200°/s2
Velocity	? >100°/s
Meets FCC Part 25.222	
	INTERFACES
RF	? Tx/Rx 50 ohms at 950–2150 MHz
ACU	? 25 ft. cable with connectors
Power	? 110-230 VAC, 50/60 Hz, 500 watts (typical)
Graphic	? 2-line menu display
	Mount geometry Polarization Azimuth Elevation Polarization Acceleration Velocity Meets FCC Part 25.222 RF ACU Power Graphic

Table A-1. TracStar i450M Technical Specifications

A

ANTENNA CHA	ARACTERISTICS
 ? Transmit frequency (14.0–14.5 GHz) ? Receive frequency (10.95–12.75 GHz) ? EIRP (typical with radome) 	 ? 35.5 dBi ? 31.5 dBi
25W BUC	46.5 dBw
40W BUC	48.6 dBw
80W BUC	51.6 dBw
? G/T (typical with radome)	? 11.5 dB/K
System Pei	RFORMANCE
? Transmit	? Up to 4 Mbps
? Receive	? Up to 45 Mbps
	Data rate performance is a function of the satellite link (Beam EIRP & G/T) and modem configuration.
? FCC	? 13.5 dBw/4 Khz
? TTU	? 19.5 dBw/4 Khz
	Maximum EIRP density allowed without waivers.
WEIGHTS &	MEASURES
? Antenna system	
Weight (BUC	
included) Dimensions	142 lbs (64.4kg)
	$-54.2 \times 45.0 \times 11.8 \text{ in} (137.71 \times 114.2 \times 20.2 \times 10^{-1})$
? Handheld display	114.3 X 30.2 cm)
unit Weight	0.5 lbs (221-5)
Dimensions	0.5 lbs (.22kg)
	-51/2 W X 31/4 D X 13/8 П (114.3 x 29.2 cm)
? ACU (1RU rack	
mount) weight	8.0 lbs (3.6kg)
Dimensions	19.0'W x 8.0'D x 1.75'H (48.2 x
	34.2 x 4.4 cm)
ENVIRON	MENTAL
? Wind	? 100 mph (153 Kph)
? Temperature	
Operational	
Non-operational	
? Humidity	? 100% at -30°C to +30°C
? Altitude	? 15,000'
? Rain	2"/hr at 40 mph
? Snock and vibration	? MIL-STD-810F
Note: Specifications are subject to change with	out notice.

Table A-1. TracStar i450M Technical Specifications (Continued)

Figure B-1 is an illustration of the TracStar i450M antenna mounting dimensions.

Figure B-1. TracStar i450M Antenna Mounting Dimensions

This appendix provides the procedure for uploading software to the ACU.

Before you begin

Before you can load software to the ACU, you must stop the ACU automatic boot process, which is done through the PC port on the ACU.

Stopping the ACU Automatic Boot Process

When you turn on the ACU to upload software, it automatically begins to load the current operating software. Therefore, you must stop the load or last process in order to upload software.

- To stop the ACU automatic boot process
 - 1 Disconnect the modern from the ACU.
 - 2 Connect a straight-through DB-9 cable from the serial port of your PC to the PC port of the ACU.
 - 3 Start HyperTerminal (or other *trital*communications program).
 - 4 From the File menu, select Properties.

The Properties window displays. See Figure C-2.

OM4 Properties	?	>
Port Settings		
<u>B</u> its per second:	2400	
<u>D</u> ata bits:	8	
Parity:	None	
Stop bits:	1 💌	
Elow controt	Hardware 💌	
	Restore Defaults	
0	K Cancel Apply	

Figure C-2. Properties Window

5 Change the Port Settings as follows:

- ? Bits per second: 38400 (baud)
- ? Data bits: 8
- ? Parity: NONE
- ? Stop bits: 1
- ? Flow control: NONE

6 Click OK to save the settings.

Before you turn on the ACU in the next step, be prepared to press CTRL+BREAK several times (while on the HyperTerminal window) until the boot process is successfully stopped; otherwise, you will have to turn off the ACU and start again.

7 Turn on the ACU and *innelly*start pressing CTRL+BREAK (on the HyperTerminal window) as the system is powering up (that is, while Monitor Check Please Wait displays on the ACU).

Characters display (similar to QMQQMM]5=9.2) on the HyperTerminal window during this process, indicating a connection to the ACU. See Figure C-3.

Figure C-3. HyperTerminal Window – Successful Connection to ACU

- 8 Continue to press CTRL+BREAK until TSS_MON3.2 displays on the HyperTerminal window, indicating that the ACU boot process has been stopped.
- 9 Do one of the following:
 - ? If TSS_MON3.2 does not display, turn off the ACU power and start again. (Return to Step 7.)

"You may want to verify that your Port settings are correct in Step 5

? Press ENTER a few more times to confirm that the boot process was successfully stopped. See Figure C-4.

The characters TSS_MON3.2 continue to display every time you press ENTER. See Figure C-4.
	Transfer Help			
* = 8 =	086			
DMOQNM) 5=9 TSS_MON3 2 TSS_MON3 2	.2			

Figure C-4. HyperTerminal Window – Boot Process Stopped

10 Continue to "Loading the Software" in the next section.

Loading the Software

After you have successfully stopped the automatic boot process of the ACU, you are ready to load the software to the ACU.

To load the software

- 1 On the HyperTerminal window, press L (upper case only). The message SEND FILE USING YMODEM-G or YMODEM displays on the HyperTerminal window.
- 2 From the HyperTerminal menu, select Transfer > Send File.

The Send File window displays. See Figure C-5.

Send File		2
Folder: C:\Docum <u>F</u> ilename:	ents and Settings\	
		<u>B</u> rowse
<u>P</u> rotocol:		
Ymodem-G		1
	Send C	lose Cancel

Figure C-5. Send File Window

3 On the Send File window, do the following:

- ? Enter the software Filename (e.g., MAIN51D2.HEX), or browse for the location of the Filename.
- ? From the Protocol drop-down list, select YMODEM-G.
- ? Click Send.

The software uploading starts and the Ymodem-G file send window displays, showing the progress. See Figure C-6.

Sending	P.\Toad SOFTWARE\COTM\STANDARDMODEMS\AntennaSoftware				
Packet	57	Error checking	Streaming	File size:	432K
Retries:	0	Total retries:	0	Files:	1 of 1
Last error:					
File:				55K of 43	12K
Elapsed:	00:00:16	Remaining	00:01:50	Throughput	3498 cps

!

Figure C-6. Ymodem-G File Send Window CAUTION: Do not power anything off or disrupt this

connection or the system may become inoperable.

When the file upload is complete, the Sending Files window displays. See Figure C-7.

Figure C-7. Sending Files Window

4 Click OK to confirm that the software upload is complete.

DONE displays in the HyperTerminal window, and the ACU system will continue to boot normally. See Figure C-8.

cotm software - HyperTerminal	
lle Edit View Call Transfer Help	
රිම් 🕫 🐉 වේට ස්	
TSS_MON3.2	
TSS_MON3.2	
ISS_MON3.2	
155_M0N3.2	
155_MUNJ.2	
155_M0N3_2	
TSS_M0N3_2	
TSS_MON3.2	
TSS_MON3.2	
TSS_MON3.2	
TSS_M0N3.2	
TSS_MON3.2	
TSS_MON3.2	
TSS_MON3.2	
ISS_MON3.2	
ISS_MON3.2	
SEND ETLE LISTNE UNODEN C or UNODEN	
SERV FILE USING TROUGH & OF TROUGH	
DONE	
TC	
[··-	

Figure C-8. HyperTerminal Window – Software Upload Done

This appendix provides a brief description of the most common fault indicators that may display.

AZ Gyro error. No reading from the AZ Gyro.

EL cal error. A problem occurred during EL calibration. This could be the EL limit switch, the EL motor, the EL motor encoder, or any of the associated wiring. It could also indicate a CPU fault.

AZ cal error. A problem occurred during AZ calibration. This could be the AZ optical encoder, the AZ motor, the AZ motor encoder, the AZ drive servo, or any of the associated wiring. It could also indicate a CPU fault.

AZ fault. The system is not responding to commands to move the system in azimuth. This could be the AZ optical encoder, the AZ motor, the AZ motor encoder, the AZ drive servo, or any of the associated wiring. It could also indicate a CPU fault.

Waiting Log On (iDirect Infiniti Series). The TracStar controller *lip*into the iDirect modern when iDirect modern is selected. Make sure the DB9-RJ45 cable is in place between the controller and the modern, as this serves as the communication link.

This appendix provides a list of system options that can be set from the Tech Setup >Set option screen. These options are used for calibration and troubleshooting procedures.

See "Set Option (SET OPTION Screen)" on page 5-19 for more information.

Table E-2 lists *sne*but not *a*system options.

CAUTION: Setting some system options can cause the system to become inoperable. Exercise great caution when entering option codes, and if there are any questions, contact TracStar for assistance.

Option	Function	Comments
05	Modem status = Locked (to simulate the modem)	
06	Send offline message to the modern (transmit disable)	Not applicable for ComTech modems.
07	Send online message to the modern (transmit enable)	Not applicable for ComTech moderns.
13	Enable polarizer motors in the idle mode	
20	Re-initialize battery-backed RAM parameters	
26	Send GPS information to the modem	Not applicable for ComTech moderns.
31	Level offset calibration	
32	Level calibration	

Table E-2. System Options

Option	Function	Comments
33	Turn on polarizer during cross-pol tests	
39	Calibrate the polarizer motors	

Table E-2. System Options (Continued)

This section contains a list of all acronyms and industry terms used in this guide.

A

ACU

See antenna control unit (ACU).

antenna control unit (ACU)

Controls the system and supplies the power and commands required to operate the TracStar i450M antenna.

AZ

See azimuth(AZ)

azimuth (AZ)

Azimuth angle in degrees measured clockwise from true north, not magnetic north.

В

```
Block up converter (BUC)
```

Converts an L-band input to the satellite frequency and amplifies the RF power.

BUC

See Block up converter (BUC).

С

СОТМ

Communications on the move.

D

DAC

See digital-to-analog converter (DAC).

dB

Logarithmic unit of measurement that expresses the magnitude of a physical quantity (usually power or intensity) relative to a specified or implied reference level.

dBm

Abbreviation for the power ratio in decibels (dB) of the measured power referenced to one milliwatt (mW).

dBW

(Decibel watt) Unit for the measurement of the strength of a signal expressed in decibels relative to one watt.

digital-to-analog converter (DAC)

Device for converting a digital (usually binary) code to an analog signal.

Ε

Eb/N0

Energy per bit to noise power spectral density ratio. It is the measure of signal-to-noise ratio for a digital communication system.

Electrically Erasable Programmable Read-Only Memory (EEPROM)

Type of non-volatile memory used in computers and other electronic devices to store small amounts of data that must be saved when power is removed (for example, calibration tables or device configuration).

EEPROM

See Electrically Erasable Programmable Read-Only Memory (EEPROM).

Effective Isotropically radiated power (EIRP)

Measure of the effective power emitted by a transmitter, or a measure of the signal strength received on Earth from a satellite.

EIRP

```
See Effective Isotropically radiated power (EIRP).
```

EL

See Elevation(EL)

Elevation (EL)

Elevation angle in degrees measured from the horizon in an upward angle.

F

FCC

See Federal Communications Commission (FCC).

Federal Communications Commission (FCC)

Independent government agency that regulates interstate and international communications by radio and television and wire and cable and satellite.

G

G/T

See gain-to-noise temperature (G/T).

gain-to-noise temperature (G/T)

Measure of the receiving ability of an antenna/LNA (low noise amplifier) combination.

global positioning system (GPS)

Global Navigation Satellite System (GNSS) developed by the United States Department of Defense. GPS is a widely used aid to navigation worldwide. It uses satellite technology to enable a terrestrial terminal to determine its position on the Earth in latitude and longitude.

GPS

See global positioning system (GPS).

Ι

International Telecommunication Union (ITU)

United Nations organization that coordinates use of the electromagnetic spectrum and creation of technical standards for telecommunication and radio communication equipment.

ITU

See International Telecommunication Union (ITU).

L

L-band

RF signals in the frequency range of approximately 950 MHz to 1450 MHz.

LNB

See Low noise block down converter (LNB).

Low noise block down converter (LNB)

Converts satellite frequency to an L-band signal and amplifies the RF power.

Ν

NOC

Network operations center.

Ρ

POL

Polarization angle in degrees measured from vertical.

R

Radio Frequency (RF)

Frequency or rate of oscillation within the range of about 3 Hz to 300 GHz.

RF

See Radio Frequency (RF).

Rx

Receive.

Т

Тх

Transmit.

Very small aperture terminal

Two-way satellite ground station with a dish antenna that is smaller than 3 meters. Data rates typically range from narrowband up to 4 Mbit/s. VSATs access satellites in geosynchronous orbit to relay data from small remote earth stations (terminals) to other terminals (in mesh configurations) or master earth station *//b*(in star configurations).

VSAT

See Very small aperture terminal.

h

A

Ascreen 5-29 æscreen 5-28 ACU button functions 5-5 buttons + or - 5-5 arrow 5-5 Enter 5-5 Main 5-5 connecting antenna cables to 2-10 control panel 5-1 rear panel 5-2 screen display layout 5-4 screen navigation tips 5-4 screens. Seescreens 5-4 antenna block diagram 1-2 cables. See cables, antenna components 1-2 antenna control unit. SeeACU AZ cal error D-1 AZ fault D-1 AZ Gyro error D-1 AZ. See azimuth azimuth track settings viewing or changing 4-6

В

*B*screen 5-30 backing up system settings 4-10 blinking bars screen display 5-5 block diagram, antenna 1-2 BW screen 5-16

С

cscreen 5-31 cables antenna routing to vehicle 2-7 connecting to antenna 2-6 drip loop 2-9 modern interface. Seemodern interface cable receive. See receive cable securing to roof rack cross bars 2-8 transmit. Sætransmit cable changing azimuth track settings 4-6 data satellite information 4-7 data satellite orbital location 4-9 downlink polarity 4-3 elevation track settings 4-6 modem type 4-3 modern type settings 4-4 scan velocity 4-4 Compass screen 5-13 components, antenna 1-2 connecting antenna cables 2-6 antenna cables to ACU and modern 2-10 control cable connecting to ACU 2-10 connecting to antenna 2-6 control panel, ACU 5-1 crate. Seeshipping crate

D

Decreen 5-32 data satellite information viewing or changing 4-7 orbital location changing 4-9 selecting 4-8 Diag screen 5-26 **Diagnostic screens** A 5-29 a 5-28 B 5-30 c 5-31 D 5-32 E 5-32 FGyro 5-34 Fpot 5-33 G 5-35 H 5-36 I 5-37 J 5-37 K 5-38 L 5-39 M 5-40 Modem Communications 5-31 N 5-40 0 5-41 P 5-41 0 5-42 R 5-43 S 5-44 T 5-45 U 5-45 V 5-46 W 5-46 Diagnostics. See Diag screen downlink polarity viewing or changing 4-3 drip loop cable 2-9

Е

Escreen 5-32, D-1, 5-23, 4-10 elevation track settings viewing or changing 4-6

F

fault indicators AZ cal error D-1 AZ fault D-1 AZ Gyro error D-1 EL cal error D-1 Waiting Log On D-1 FGyro screen 5-34 flashing bars. *See* blinking bars Fpot screen 5-33

G

G screen 5-35, 5-13

Η

H screen 5-36 hardware shipping box 2-2

Ι

Iscreen 5-37 installing antenna to vehicle roof rack 2-4

J

Jscreen 5-37, 5-15

Κ

Kscreen 5-38

L

L screen 5-39, 5-21, 5-24, 5-17

Μ

Mscreen 5-40, 5-17 modem connecting antenna cables to 2-10 Modem Communications screen 5-31 modem interface cable connecting from ACU to modem 2-10 Modem screen 5-22 modem type viewing or changing 4-3 modem type settings viewing or changing 4-4 Move screen 5-23

Ν

Nscreen 5-40 navigation tips ACU screens 5-4

0

Oscreen 5-41

Ρ

Pscreen 5-41

Q

Q screen 5-42

R

Rscreen 5-43 Ready screen 5-6 Ready/Run screens Compass 5-13 **GPS 5-13** Select Data 5-12 SetRef 5-11 Sho 5-10 rear panel, ACU 5-2 receive cable connecting to antenna 2-6 connecting to modern 2-10 removina antenna from shipping crate 2-2 roof rack cross bars securing cables to 2-8 routina antenna cables to vehicle interior 2-7 Rs screen 5-16 Run screen 5-7

S

Screen 5-44, 5-16 satellite acquisition standard process 3-1 starting 3-3 satellite. See data satellite scan velocity viewing or changing 4-4 screen navigation tips 5-4 screens A 5-29 a 5-28 B 5-30 **BW 5-16** c 5-31 Compass 5-13 D 5-32 Diag 5-26 E 5-32 **Elcal 5-23** FGvro 5-34 Fpot 5-33 G 5-35 GPS 5-13 H 5-36 I 5-37 J 5-37 Jog 5-15 K 5-38 L 5-39 LEVL 5-21 LNB 5-24 LNBt 5-17

M 5-40 Mc 5-17 Modem 5-22 Modem Communications 5-31 Move 5-23 N 5-40 0 5-41 P 5-41 0 5-42 R 5-43 Ready 5-6 Rs 5-16 Run 5-7 S 5-44 Sat 5-16 Select Data 5-12 Set Option 5-19 Set Test 5-20 SetRef 5-11 Sho 5-10 T 5-45 Tech Setup 5-18 Tt 5-25 U 5-45 USAdvb 5-24 User Setup 5-14 V 5-46 W 5-46 Select Data screen 5-12 selecting data satellite 4-8 Set Option screen 5-19 Set Test screen 5-20 SetRef screen 5-11 shipping box, hardware 2-2 shipping crate contents 2-1 removing the antenna 2-2 unpacking 2-1 Sho screen 5-10 standard satellite acquisition process 3-1 starting satellite acquisition 3-3 system settings backing up 4-10 turning on 3-2

Т

T screen 5-45 changing 4-1

Tech Setup screen 5-18 Tech Setup screens Elcal 5-23 **LEVL 5-21** LNB 5-24 Modem 5-22 Move 5-23 Set Option 5-19 Set Test 5-20 Tt 5-25 USAdvb 5-24 tie wraps securing cables to roof rack 2-8 transmit cable connecting to antenna 2-6 connecting to modem 2-10 Tt screen 5-25 turning on system 3-2

U

Uscreen 5-45 unpacking shipping crate 2-1 USAdvb screen 5-24 User Setup screen 5-14 User Setup screens BW 5-16 Jog 5-15 LNBt 5-17 Mc 5-17 Rs 5-16 Sat 5-16

V

V screen 5-46 viewing or changing azimuth track settings 4-6 data satellite information 4-7 downlink polarity 4-3 elevation track settings 4-6 modem type 4-3 modem type settings 4-4 scan velocity 4-4 Tech Setup code 4-1

W

Wscreen 5-46 Waiting Log On D-1

TracStar

上海宙际实业有限公司

Shanghai Universe Industrial Co., Ltd.

地址:上海市天目西路547号恒基不夜城 A 座1406 电话(Tel):(021)51061861 51061862

传真(Fax):(021) 51061863

全国电话: 4006888703

TracStar i450M Installation & Operation Guide (v1.0) February 2009 Doc. No. i450M-01-09

